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This article develops a model of growth and innovation in which
accumulation dynamics of knowledge and R&D are explicitly con-
sidered. The model is based on a more general knowledge produc-
tion framework than commonly used in Endogenous Growth The-
ory and R&D productivity literatures, reconciling as special cases
disparate analytical frameworks and functional forms. The mod-
eling approach reveals the structure of R&D elasticity estimation
biases that can result from failure to take into account the accu-
mulation dynamics of knowledge and R&D. These findings provide
guideposts for empirical studies on R&D productivity and innova-
tion based on the knowledge production function framework. Fi-
nally, the model of knowledge sector dynamics highlights the role
of physical capital in the creation of innovations and establishes
the theoretical possibility of long-run idea-driven growth without
the razor-edge assumption of Romer (1990) and in the absence of
growth in R&D employment stipulated by Jones (1995).
JEL: O31, O32, O33, O34, O40
Keywords: Growth theory; innovation; R&D; knowledge produc-
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I. Introduction

Scholars from different academic disciplines, and working with different method-
ologies, argue that accumulation of technological knowledge is a key driver of
economic growth. Historical accounts of the economic development of nations
observe how mastery of new technologies had accompanied industrial growth
(Gerschenkron, 1962). Knowledge also occupies a central role in growth theory,
where it figures as a key input, alongside capital and labor, in models of aggregate
production (Solow, 1956, 1957; Romer, 1990). The consensus on the centrality
of knowledge accumulation to economic growth extends to many sub-disciplines
of economics, including production economics, economics of management, and
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economics of innovation. Because knowledge is widely believed to be an impor-
tant ingredient in economic growth, the process of knowledge production and
accumulation deserves careful attention.

In this paper we present a model of knowledge dynamics designed to capture
the process of knowledge creation and accumulation. The model extends the
knowledge production function encountered in models from Endogenous Growth
Theory (EGT) and incorporates features of knowledge capital accumulation ap-
pearing in the literature on R&D and productivity. In the proposed model, we
make a distinction between R&D and knowledge, which are closely related and
frequently conflated concepts in the literature. The model includes two stocks: a
knowledge stock consisting of the sum total of disembodied technologically rele-
vant ideas, and an R&D stock, representing accumulated embodied research effort.
R&D stock contains labor and physical capital components, allowing for a role of
physical capital in the creation of knowledge. Maintaining separate stocks allows
us to capture the separate but interconnected flow and accumulation dynamics
of knowledge and R&D.

This analytical exercise has implications for balanced growth and the measure-
ment of returns to R&D. Our model of knowledge dynamics reveals the structure
of estimation biases that can result from exclusion of physical capital and failure
to take into account accumulation dynamics. Lastly, the model suggests the pos-
sibility of idea-driven growth without the razor-edge assumption of Romer (1990)
and in the absence of growth in R&D employment stipulated by Jones (1995).

Section IV introduces the R&D-based knowledge production function which is
a modification of the knowledge production function from EGT. Section V sets
up the building blocks of a model of knowledge dynamics. Section VI develops
the full model of knowledge and R&D accumulation dynamics, while Section
VII discusses the model’s comparative statics. Sections VIII and IX identify the
implications of the model for measurement and econometric estimation of R&D
elasticity of innovation. Section X discusses interesting implications of the model
from the point of view of economic growth. But first, in Sections II and III, we
try to set aside a few common misconceptions.

II. Reflections on Models of Knowledge Production

The production function is one of the central analytical tools in economics.
By relating output to its factor inputs it describes the production process and
links to other notions from production theory, such as efficiency and productiv-
ity. Production functions used in contemporary economics trace their lineage
to the 1928 work of Charles Cobb and Paul Douglas (Berndt and Christensen,
1973), although the idea of expressing production as a mathematical function
that relates output to a set of inputs is older, dating at least as far back as 1894,
when philosopher Philip Wicksteed published his essay on distribution (Wick-
steed, 1894), and possibly to earlier work of Johann von Thünen (Mishra, 2007).
The knowledge production function (KPF) framework represents one important
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methodological approach to the study of innovation and technical change—an
alternative to qualitative and historical studies.1

While in a generic production function an index of outputs is related to mea-
sures of factor inputs, in a knowledge production function an index of innovation
is related to factors determining the intensity of innovative activity. The index of
innovation is either incorporated into a broader production function framework
which includes output, or is used standalone. The latter is more frequently the
case in applied and theoretical research that is concerned primarily with inno-
vation itself and only to a lesser extent with the role of innovation in a broader
production system.

The knowledge production function approach has been applied to assess the im-
pact of R&D on output and total factor productivity (Griliches, 1988; Verspagen,
1995; Abdih and Joutz, 2006), to estimate the rate of return to R&D (Bernstein,
1989; Jones and Williams, 1998), to understand factors determining the intensity
of innovative activity across industries and at various spatial scales (Porter and
Stern, 2000; Mohnen, Mairesse and Dagenais, 2006), and to measure knowledge
spillovers (Jaffe, 1986; Griliches, 1992; Coe and Helpman, 1995; Audretsch and
Feldman, 1996).2

Knowledge production in the R&D productivity literature

Knowledge production functions come standard with the literature on produc-
tivity, an early discussion of which can be found in Griliches (1979). The departure
point for these studies is the aggregate production function:

(1) Y = F (A,K,L)

in which a measure of output Y is related to inputs, where K and L represent cap-
ital and labor, respectively, and A stands for the level of technological knowledge.
The literature posits a relationship between the level of technological knowledge
and investments in knowledge production in the form of research and develop-
ment, and sets before itself the task of estimating the impact of R&D activities
on output and growth.

The role of the knowledge production function in this literature is to describe
the relationship between knowledge and R&D investment. The KPF is of the

1See Griliches (1979) for a discussion of the relative merits of these alternative investigative ap-
proaches.

2A recent survey of work on the R&D-productivity nexus is Mohnen and Hall (2013). For an overview
of studies estimating the rate of return to R&D see Hall, Mairesse and Mohnen (2010). Surveys of
literature on spillovers can be found in (Branstetter, 1998) and Cincera and de la Potterie (2001); a more
recent survey on this topic is Belderbos and Mohnen (2013).
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form: 3

(2) Ȧ = R

which we may term, for referential convenience, the ”Griliches knowledge produc-
tion function.” In this equation Ȧ is the output of new knowledge and R is input
into knowledge discovery effort by way of R&D expenditure (Griliches, 1990). 4

Knowledge stock in the Griliches framework is a cumulation of current and prior
additions to knowledge resulting from the stream of R&D expenditures. (In the
following discussion we denote stock variables using boldface font.) In the absence
of knowledge depreciation, knowledge can be described simply as the sum of the
current and past R&D investments:

(3) At =

t∑
i=−∞

Ȧi =

t∑
i=−∞

Ri.

However, in deriving knowledge stock from the knowledge production function,
knowledge depreciation must be taken into account. Knowledge depreciation, (al-
ternatively termed ”R&D depreciation” in the literature), is a phenomenon anal-
ogous to depreciation in capital theory (Benhabib and Rustichini, 1991) which
features prominently in literature on measuring returns to R&D (Hall, 2007). Be-
cause over time knowledge loses its relevance, prior R&D expenditures are thought
to contribute less to the current knowledge stock than current expenditures. In
the notation provided by Griliches (1979), the stock of technologically relevant
knowledge is expressed as a function of the R&D expenditure stream using the
following equation:

(4) At = G(W (B)R, v).

Equation (4) is sometimes called a ”knowledge function” (Esposti and Pierani,
2003), although, as we shall see, strictly speaking it is a function describing knowl-
edge accumulation. In this equation, A is the stock of technological knowledge
and W (B)R is an index of current and lagged R&D expenditures. The function
G(W (B)R) can be re-expressed as:

(5) At = Rt + (1− γ)At−1,

3If we include the stochastic component, the KPF is of the form Ȧ = R + u, per Griliches (1990),
but inclusion of the stochastic element at the doorstep of our discussion is not essential and would only
unnecessarly complicate our analysis.

4Griliches (1990) uses K to represent knowledge. The notation has been changed from the original
for consistency with the nomenclature used in the rest of this article.
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which will be recognized as the perpetual inventory method (PIM) for calculating
stock variables. In the PIM equation current stocks are calculated as the sum of
current-period investments (Rt) and the stocks left over from the previous period
adjusted for depreciation ((1 − γ)At−1). The depreciation rate is given by the
parameter γ. Further discussion of the relationship between the Griliches KPF
and the PIM can be found in Appendix A.

The variable v in equation (4) represents all other factors influencing the stock
of knowledge, so that the equation expresses knowledge stock as a function of the
sum of the current-period R&D and depreciated R&D from prior periods, plus
the residual factors v. These residual factors have not played much of a role in
empirical construction of R&D stocks. One review of the literature on R&D an
productivity found that ”[a]lmost all... have used a simple perpetual inventory
or declining balance methodology with a single depreciation rate to construct the
knowledge capital produced by R&D investments” (Hall, Mairesse and Mohnen,
2010, p. 15).

It is worthy of notice that while the knowledge production function in equa-
tion (2) is at the heart of the Griliches framework, it is not very salient. The
aim of this literature is to study the effect of knowledge created by R&D on pro-
ductivity. Because in the productivity literature equation (2) serves simply as a
transition point on the way to calculation of R&D stock, given by the knowledge
accumulation equation (4), it is easy to miss.

Knowledge Production and the Theory of Endogenous Growth

The knowledge production function features more prominently in growth the-
ory. Although the knowledge production sector is only one element of a complete
endogenous growth model, it is of focal importance, since the growth rate of
knowledge determines the growth rates of all other variables in the system. The
knowledge production function encountered in Endogenous Growth Theory, which
we term the Romer-Jones knowledge production function, is of the form: 5

(6) Ȧ = δLλAAφ,

where Ȧ is knowledge flow, A is knowledge stock, LA is labor employed in the
R&D sector, λ is a parameter measuring the return of knowledge from R&D labor
and φ is the intertemporal spillover parameter. This rendition of the knowledge
creation process includes knowledge stock (A) on the right-hand side to account

5Above is the parametrized KPF adapted from Romer (1990) by Jones (1995). Variations exist,
based on slightly different interpretations of the the labor variable, restrictions on parameters λ and φ
and utilization of a different nomenclature for variables. In Romer (1990), the exact notation used was

˙A =δHAA; with knowledge represented by A and HA denoting the amount of human capital. Jones
uses the form Ȧ = δLλAA

φ; where knowledge stock is represented by A, LA is labor employed in R&D,
and δ is the arrival rate of innovations. However, these differences are not essential for our analysis. For
consistency we have kept to the Jones (1995) notation throughout the whole paper.
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for the possibility that knowledge output depends on the stock of already accu-
mulated knowledge.

Even a cursory glance at equations (2) and (6) reveal that the Griliches and
Romer-Jones KPF present quite different theories of knowledge formation. In the
literature on returns to R&D, knowledge production is synonymous with research
effort (Hall, Mairesse and Mohnen, 2010). In endogenous growth theory too, new
technologically relevant ideas involve research effort, but the arrival rate of in-
novations is also conditioned by the stock of previously accumulated knowledge
(Romer, 1990; Aghion and Howitt, 1992; Jones, 1995). Furthermore, the measure
of research effort in the two models is different. The Romer-Jones knowledge pro-
duction function proxies research effort using the quantity of labor employed in the
R&D sector; Griliches measures research effort with R&D expenditure, which is
a broader measure incorporating the labor—and physical capital—components of
the knowledge discovery effort. Finally, the two models of knowledge production
differ in their approach to accumulation. In the Griliches knowledge accumula-
tion equation research effort accumulates, contributing to the stock of knowledge.
In the Romer-Jones model, knowledge accumulates, but research effort does not.
The Romer-Jones KPF includes two factors: the existing body of knowledge (A)
and the number of scientists and engineers in the R&D sector (LA). The former
is a stock but the latter is a flow variable.

It might appear at first glance that the count of scientists and engineers can
be considered a stock variable. This argument does not stand up to close exam-
ination. From the standpoint of the production system, labor’s contribution to
production is through the services it renders to the production process. Whether
LA is a stock or a flow depends on whether it includes labor services rendered in
prior periods. If only contemporaneous labor services are included in production,
as in the case of Romer-Jones, the labor variable is a flow.6

Differences between the Griliches and Romer-Jones conceptions of knowledge
production can have profound implications for modeling and empirical estima-
tion. If existing knowledge stock serves as a factor in knowledge production, then
its omission from the Griliches KPF will result in omitted variable bias and skew
the resulting estimates of R&D elasticity, a point raised previously by Jones and
Williams (1998). Omission of accumulated R&D effort from the Romer-Jones
KPF can be expected to lead to biases of its own. What, then, is a better way to
model knowledge production? What factors should be included in a knowledge
production function? In the next section we consider inputs into knowledge pro-
duction and their inter-relationships. This exercise leads to three observations
which serve as a scaffolding on which we build a more general knowledge produc-
tion function, in Section (IV), of which Griliches and Romer-Jones functions are
special cases.

6What would make the labor variable a stock is inclusion of prior-period labor services.
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III. R&D Capital, Human Capital and Knowledge

Knowledge and R&D are frequently invoked concepts in economics. Yet, in ex-
isting literature, the definitions of knowledge and R&D and their inter-relationship
are not always made clear, nor are these definitions consistent across studies. Ex-
isting literatue has treated research effort and knowledge in one of two ways,
either by equating research effort to knowledge or by describing a process by
which research effort is turned into knowledge. In the first, ”effort as knowledge”,
perspective the two concepts are either treated as synonymous, or a measure of
one is used as a close proxy for the other. A mark of the ”effort as knowledge”
literature is that the two terms are used interchangeably. Griliches (1992) is one
of many examples of this usage. In that study the variable A in the accumulation
equation (4) is referred to as both ”knowledge capital” and ”R&D capital”.

The ”effort as knowledge” perspective has been dominant in studies of pro-
ductivity. This is a perspective hardwired into the Griliches KPF (equation (2))
which sets a sign of equality between Ȧ and R. In the accompanying PIM accu-
mulation equation (5) R&D turns into knowledge seamlessly. One becomes the
other, with adjustment only for depreciation. Aside from the reduction owing to
depreciation, the model implies that R&D and knowledge are consubstantiate. In
this view, knowledge is nothing more than accumulated R&D expenditure.

In ”effort to knowledge” discourse, R&D and knowledge are recognized as dis-
tinct concepts. The relationship between these concepts is described as a process
by which knowledge arises from research effort. In this framework, the flow of
new technological ideas (Ȧ) is driven by the allocation of resources to research.
The EGT literature has adopted this perspective, describing a process by which
knowledge aises from reseach effort, which is represented by the research labor or
human capital component of R&D and measured by the number of scientists and
engineers. Because the concepts ”knowledge” and ”R&D” are so central to the
study of innovation, we pause to reflect on them.

In economic theory knowledge has more than one alias. The variable ”A” in
equations (4) and (6), representing the stock of knowledge, also goes under the
names ”technology” (Benhabib and Spiegel, 2005; Los and Verspagen, 2000) and
”total factor productivity” (Caselli and Coleman, 2006). Changes, or new addi-
tions to the body of knowledge, the variable ”Ȧ” in (2) and (6), alternate between
the labels ”technical change” (Griliches, 1988), ”technological change” (Verspa-
gen, 1995), ”new knowledge” (Abdih and Joutz, 2006), ”invention” (Griliches,
1979) and ”innovation”. Finally, the units of measure into which ”the stock
of general knowledge” (Branstetter, 1998) can be divided has been discussed in
terms of ”ideas” (Porter and Stern, 2000), ”blueprints” (Grossman and Helpman,
1991), ”patents” (Sequeira, 2012), ”designs” (Romer, 1990; Branstetter, 1998),
”inventions” (Jones, 1995), and, once more, ”innovations”. The word ”innova-
tion” has two senses. It can mean ”a novelty”, or ”an act or process of creating
or introducing something new”. Both meanings are in currency in the literature,
with the former definition used as another term for a unit of measure of knowledge
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(as, for example, in Porter and Stern (2000), and the later as a description of the
process of creation of new knowledge (e.g.: Freire-Seren (2001)). It is important
to discern the underlying concept that hides behind the fog of labels. This is the
task of the following sub-section.

Observation 1: Knowledge is Distinct from R&D

In discussing the attributes of knowledge the literature stresses two features:
nonrivalness and partial excludability. The nonrival nature of knowledge allows
multiple agents to use it at the same time. Knowledge is nonrival because it
is ”disembodied” (Benhabib and Spiegel, 2005), that is, ”independent of any
physical object” (Romer, 1990). It is partially excludable because even though
it can be used by multiple agents, there might be a mechanism through which
it might be possible to restrict some agents from using it, as is the case when
monopoly on its use is provided through patents. Further, the stock of knowledge
has no obvious natural bound; in principle it can grow without limit.

In contrast to the disembodied nature of knowledge, R&D is embodied. The
Frascati Manual defines R&D expenditure as consisting of several categories.
These include capital expenditures on land and buildings, instruments and equip-
ment and computer software, various labor expenses, and ”non-capital purchases
of materials, supplies and equipment to support R&D performed” (OECD, 2002,
p. 109). Most of these objects are rival and excludable. This is particularly the
case of research-related real estate, such as land and buildings that host labora-
tories, but also of research assets linked to labor. A scientist is a rival asset who
cannot be put to work in multiple locations at the same time.

Clearly, ideas and R&D are different. There are two key difference between
knowledge and R&D: one has to do with the extent of embodiment and the sec-
ond, with the emplacement within the innovation process. The first difference is in
the extent of embodiment. Knowledge is disembodied; R&D, on the other hand,
is embodied. Knowledge resides in replicable patterns—arrangement of human
brain neurons, books, media, data and patents; research and development expen-
diture purchases scientific instruments, raises laboratories and pays the salaries
of scientists and engineers. Knowledge is the sum total of useful ideas. R&D is
the expenditure made with the aim of discovering new useful ideas, and the assets
and activities associated with this expenditure.

Knowledge’s situation in the innovation process is also distinct from R&D. R&D
is an input into knowledge creation, while knowledge is an output from R&D
effort. The relationship between knowledge and R&D can be conceptualized by
locating the place of each in the production process. In any given period of time,
society has a fixed amount of aggregate output which it can spend on different
activities. A fraction of society’s output is allocated to R&D. R&D, or ”R&D
expenditure”, are resources devoted to the discovery of new knowledge. The
amount of accumulated knowledge is one of the inputs defining the productive
capacity of society. Consequently, knowledge produced as a result of research and
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Figure 1. Innovation Cycle

development contributes to economic productivity and increases total output.
The ”innovation cycle” repeats.

This article insists on conceptual clarity with respect to R&D expenditure and
knowledge. Consequently, we maintain a distinction between R&D and knowl-
edge. Maintaining this distinction paves the way for a formal model capturing
the essential dynamics of knowledge and R&D.

Observation 2: Knowledge is Distinct from Human Capital

Our next observation pertains the relationship between knowledge and ”human
capital”, the latter understood as the set of human skills and abilities. The
distinction between knowledge and human capital is not immediately obvious.
For example, is the ability to add, ”human capital” or ”knowledge”? Foray (2006)
looks at knowledge in terms of ”expertise”, a view which would capture a swath of
the territory that rightfully belongs to human capital. By contrast, Romer (1990)
has drawn a sharp line between knowledge and human capital. He argues that the
former is disembodied and nonrivalrous, while the notion of human capital lacks
either attribute. Human capital is not disembodied, he argues, since it is linked
to human beings. It is also rivalrous, since a human possessing a skill cannot
exercise that skill in multiple places concurrently. Additionally, unlike replication
of knowledge, duplication of human skills is not relatively costless: ”[t]raining the
second person to add is as costly as training the first” (Romer, 1990).

There is no agreement in the literature on where the boundary between knowl-
edge and human capital should lie. While the boundary between knowledge and
human capital may be drawn differently, its exact sinuation is not crucial for for-
mal modeling. If a line between two variables can be drawn somewhere, we can
proceed with a model in which knowledge and human capital are two distinct
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variables.

Observation 3: ”R&D Capital” Includes R&D Labor

Finally, we take care to avoid a misconception that might arise out of the
notion of ”R&D capital”, alternatively referred to in the literature as ”knowledge
capital”, ”R&D stock” and ”knowledge stock”. In the productivity literature
it has been widely recognized that R&D expenditures ”act as capital”, that is,
R&D expenditures should be viewed as investments that continue to have an effect
post-expenditure and should not be ”assumed to be instantaneously depreciated”
(Terleckyj, 1980, p. 57). That is why when estimating the elasticity of output with
respect to R&D and the rate of return on R&D investment, a measure of ”R&D
capital” is derived, which consists of cumulated R&D expenditures depreciated
at some rate γ.

It is important to observe, however, ”R&D expenditures are composed of la-
bor, capital, and material costs” (Hall, Mairesse and Mohnen, 2010, p. 13).
Ironically, while in productivity literature the preferred measure of knowledge
discovery effort—termed ”R&D capital”—also includes labor, it is precisely the
capital component of R&D that is excluded from the measure of research effort
adopted in Endogenous Growth Theory. Therefore, the term ”R&D capital” can
be misleading. For this reason we prefer the more neutral term ”R&D stock”, un-
derstood to contain a physical capital component and a labor (or human capital)
component.

IV. An R&D-Based Knowledge Production Function

In rethinking the two common forms of the knowledge production function, our
research aims to address what we view as the shortcomings of existing frameworks
for modeling knowledge creation. The Griliches KPF does not view knowledge
as distinct from R&D. It is, however, amenable to modeling an accumulation
dynamic. The Romer-Jones functional form has two weaknesses. First, it does
not include the full spectrum of effort devoted to knowledge discovery. Embedded
in equation (6) is the assumption that discovery effort comes only from labor,
excluding physical capital used in R&D.7 The second shortcoming of the Romer-
Jones KPF is that it does not consider accumulation in effort applied to idea
creation. Although the Romer-Jones model of the knowledge sector incorporates
accumulated knowledge stocks as a factor in knowledge production, it includes
only current-period effort devoted to the discovery of new knowledge, which is
measured by research labor (LA). However, from literature on R&D we know that
knowledge discovery is subject to lags (Griliches, 1979). Consequently, current-
period discovery effort is important, but so is effort made in prior time periods.
Because the Romer-Jones KPF sets up research effort as a flow, it is unable to

7In Romer (1990) human capital is included as a factor representing research effort; in Jones (1995)
knowledge discovery effort comes from labor employed in R&D.
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take into account its accumulation. In short, Griliches KPF is a step in a model
of knowledge accumulation; the Romer-Jones KPF is mostly about production.
But in studying knowledge, innovation, and growth, we are interested in both.
A more general model should capture both the production and accumulation of
both, knowledge and research effort.

Below we follow up the discussion of KPF functional forms in Section II and the
relationship between KPF factor inputs in Section III with an alternative knowl-
edge production function that addresses the weaknesses of earlier approaches.
What are the positive recommendations for the construction of this KPF? Obser-
vation 1 militates against the tautology between knowledge and R&D of equation
(2). From Observation 2 we conclude that an R&D human capital component
should be included as a factor in the KPF, distinct from the knowledge stock
factor. Observation 3 argues for inclusion of an R&D physical capital variable.
Finally, all factor variables should enter the KPF as stocks, in order to account
for lagged effects.

In a generic knowledge production function new knowledge is an output re-
lated to a list of inputs. We can conceive of a knowledge production process
in which new knowledge results from research effort, modulated by the stock of
already existing knowledge. Effort devoted to knowledge production is measured
by an R&D expenditure variable resulting in a Cobb-Douglas form R&D-based
knowledge production function:

(7) Ȧ = δRζAφ,

where δ is the productivity parameter, A is knowledge stock, and R represents
accumulated R&D stock.8 Parameter ζ measures the elasticity of knowledge with
respect to R&D. The intertemporal knowledge spillover parameter φ measures
the contribution of extant knowledge stock to the production of new knowledge.

R is a composite input consisting of human and physical capital stocks:

(8) R = LλAKκ
A

where LA denotes the accumulated effort of labor employed in the R&D sec-
tor, KA is physical capital devoted to R&D, and parameters λ and κ represent
the share of each factor in total R&D. This formulation diverges from the EGT
assumption that human capital inputs of labor are sufficient proxy for research
effort. It might be argued that in the R&D sector labor inputs are most of what
matters for knowledge creation because of the assumed high share of labor in
R&D expenditure. Nevetheless, creation of new knowledge requires research labs

8A similar KPF formulation is found in Jones and Williams (1998) with the difference that in that
study the authors measure research effort with the flow of R&D. The Jones and Williams (1998) KPF

can be expressed as Ȧ = δRζAφ using the boldface notation to differentiate between flow and stock
variables.
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as well as research lads. In fact, R&D is more capital-intensive than the produc-
tive sector. Cross-country data on R&D presented in Table (A1) show that the
non-labor share in R&D is not negligible and therefore should not be discarded
uncritically. Recognition that research effort is a composite input consisting of
both human and physical capital components should be expected to have the
practical effect of correcting an omitted variable bias in empirical estimates.

Substituting (8) into (7) results in an extended R&D-based knowledge production
function:

(9) Ȧ = δ
(
LλAKκ

A

)ζ
Aφ.

We can expect the accumulation of labor and capital employed in R&D to proceed
differently from each other. For example, the rates of growth and depreciation of
labor and capital aggregates will almost surely not be identical. Such differences
can be accounted for, and they will be considered in our framework in Sections
IX and X.

The R&D-based knowledge production function bridges the gap between al-
ternative formulations of knowledge dynamics coming from EGT and the R&D
productivity literatures. We note that the Romer-Jones KPF is a special case
of the proposed KPF, under the restrictions λ = 1 and κ = 0 and with lags of
LA discounted at a 100% rate. Likewise, the Griliches KPF is a special case of
equation (9) under the restrictions δ = 1, φ = 0, ζ = 1 and 100% depreciation for
lags of KA and LA.

The R&D-based knowledge production function forms the core of our model of
knowledge dynamics. But, by itself, the knowledge creation process is insufficient
to explain the full range of knowledge dynamics since it does not take into ac-
count the accumulation of the stocks that serve as factors of production. What
remains is to embed the knowledge production equation within a framework of
accumulation. That is the task of the next two sections.

V. Building Blocks of a Knowledge Dynamics Model

In developing a model of the knowledge sector we embed the R&D-based knowl-
edge production function in a broader framework. This section presents, in general
terms, the elements of this framework. Our knowledge dynamics model consists
of four components. The first, is a rule by which investments are allocated to the
R&D sector. By this rule a stream of flows into the R&D sector is generated.
The second module is a process of R&D accumulation, that takes into account
depreciation, or obsolescence, of aged R&D stocks. A knowledge production pro-
cess represented by a KPF is the third component. The fourth module is a model
of knowledge accumulation, which works similarly to the R&D accumulation pro-
cess. In this and following sections, wherever expositional simplicity is desired,
we work with the more compact form of the R&D-based KPF (equation (7)),
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relying on the R composite.

R&D investment

Knowledge creation begins with provision of resources for research. In each time
period some economic resources are allocated towards research and development.
This incremental addition to R&D (”R&D increment”) is described by an R&D
investment equation the general form of which is:

(10) RIt = FRI (E(t, ...)),

where RIt represents the economic resources devoted to R&D, t is the time index,
and E is a vector of variables that determine RI . The allocation of resources for
R&D can be made on the basis of a fixed proportion of total resources (i.e. a set
percentage of GDP) or follow from some other allocation rule. One can imagine
a number of societal R&D investment rules. In principle, we can treat RI as
constant, as a variable growing at a constant rate, or as a variable governed by
a more complex functional form. For example, RIt can be derived from a profit-
maximization rule. Current-period R&D investment could also be formulated
to depend on prior-period R&D (RIt−1), or on past or current macroeconomic
conditions (Y ).

R&D stock accumulation

Next, we turn to consider the accumulation dynamics of R&D stock. R&D
accumulation consists of two processes: investment and depreciation. The stock
of R&D increases as a result of of R&D investment. At the same time, the R&D
stock is subject to depreciation. The law of motion for R&D is described by the
R&D stock accumulation equation :

(11) Ṙ = RI − γR ∗R,

where Ṙ represents the net change in R&D stock, RI is the incremental addition
to R&D, R is extant R&D stock, and γR is the R&D depreciation rate.

Knowledge production

Current-period incremental increase in knowledge is described by a knowledge
production function FA, the general form of which is:

(12) AI = FA(O(...)),

where O(...) is a list of factors of knowledge production. Two competing forms
of this function were considered in Sections (II) and (IV), and a general form of
a knowledge production equation was proposed in Section (IV). Below we will
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work with the more general R&D-based KPF, AI = δRζAφ. The R&D stock
variable is present in the KPF, as well as in the R&D accumulation equation, a
feature that allows closure of the full model of the knowledge sector.

The amount of knowledge created in a society at any given time can be con-
ditioned by factors not explicitly considered here. For example, the suitability
of the general political and economic environment for innovation, quality of in-
stitutions, and the intellectual property regime, can be expected to influence the
arrival rate of innovations. Such variables could also be included as factors in an
R&D-based KPF. Because these aspects of knowledge production are not the fo-
cus of this inquiry, they are not explicitly included in the full model. The residual
term δ of the R&D-based knowledge production function is a catch-all for other
determinants of the innovation arrival rate.

Knowledge stock accumulation

Much like R&D stock and physical capital, knowledge too has been theorized to
exhibit accumulation dynamics, that is, being subject to creation and depreciation
(Griliches, 1990). The notion of depreciation in the context of physical capital
is based on the physical phenomena of wear and breakdown. For R&D stock,
the meaning of depreciation is linked to the wear and tear of equipment used
in research (depreciation of physical capital employed in research), as well as
obsolescence of capabilities embodied in humans working on the creation of new
ideas. In the context of knowledge accumulation, the concept of depreciation
relates to obsolescence of ideas in their capacity to contribute to the creation of
new ideas.9

Mathematically, the treatment of accumulation dynamics in knowledge stock
is identical to that of R&D stock. Accumulated knowledge stock can be defined
as the sum of all additions to knowledge, adjusted for depreciation. In each
time period, the change in knowledge stock Ȧ is determined by the amount of
knowledge currently produced (AI) minus depreciated stock. The evolution of
knowledge stock is described by a knowledge stock accumulation equation :

(13) Ȧ = AI − γA ∗A

Dividing the above knowledge stock accumulation equation by A we get the

proportional growth rate for knowledge, Ȧ
A = AI

A − γA, that is, the growth rate
of the knowledge stock is the difference in the rate of creation of new knowledge
(AIA ) and the rate of obsolescence of the extant knowledge stock (γA). Combining
knowledge production with knowledge accumulation we get the following general
form for the law of motion of knowledge stock:

9Note that an obsolete idea can continue to be useful in the physical economy while losing its capacity
to contribute to creation of new ideas. A bicycle, once invented, can continue to be manufactured and
used while yielding its significance to more cutting edge technological innovations in transportation.
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(14) Ȧ = FA(O(...))− γA ∗A

The knowledge stock in any period is the result of accretion of the above knowl-
edge flows. Thus, integrating

∫m
−∞

˙A(t) dt will give us knowledge stock at time
m.

VI. A Model of Knowledge Dynamics

We build the model by giving concrete functional forms to the four build-
ing block equations previously specified in implicit form. The building block
equations can then be integrated into a complete model of knowledge and R&D
dynamics. A full model will show the state of knowledge and R&D stocks at
any given point in time. It will also reveal the short-term and long-term growth
rates of the two stocks and their sensitivity to parameters in the production and
accumulation equations. With proportional growth rates in hand it will be pos-
sible to address the question whether a double-stock model with accumulation of
knowledge and R&D is consistent with balanced growth.

In the remainder of the article, whenever all variables are explicitly defined, so
that it is easy to distinguish variables representing stocks from those indicating
flows, we dispense with the convention of using boldface font to designate stock
variables.

R&D stock and growth

Let us assume that in every time period, a certain amount of resources, RI(t),
is allocated towards research and development. Let us further assume that this
R&D increment starts from a base value of RI0 in time period t = 0 and grows
over time at a rate θR:

(15) RI(t) = RI0e
tθR .

The above R&D investment equation defines the stream of R&D flows. Initially,
we place no restrictions on the growth rate θR.10

R&D stock evolves according to the previously discussed R&D stock accumu-
lation equation:

Ṙ(t) = RI(t)− γR ∗R(t).

10The growth rate θR can be any real number and need not be constant. If the growth rate is time-
dependent (θR[t]) then we are avoiding an imposition of a specific functional form (exponential) for the
growth rate of RI ; this amounts to stating that at any given time we can extrapolate an exponential
growth rate, but the actual change in RI can be governed by a generating process described by another
functional form.
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We can obtain the formula for R&D stock in two steps. The first step is
to substitute the R&D investment equation into the R&D stock accumulation
equation:

(16) Ṙ = RI0e
θR∗t − γR ∗R,

which yields the law of motion for R as an explicit differential equation. In step
two, solving equation (16) for R produces an equation for R&D stock:

(17) R(t) =
RI0e

θR∗t

γR + θR
+ e−tγRC1 ,

where C1 is a constant of integration. In the long run, as t →∞, the term with
the contast of integration approaches zero.

As we would expect, the greater the depreciation rate γR, the lower the R&D
stock. R&D stock is also positively dependent on the size of the initial R&D
increment (RI0) and the growth rate of the R&D increment (θR). In the case of
θR, the exponent θR predominates over the term in the denominator, so on the
whole the long-run effect of a high growth rate of the increment is positive. We
can see from the derivative of R with respect to the growth exponent θR (equation
(18)) that the positive term predominates for arbitrarily large values of t:

(18) ∂θRR(t) = RI0

(
etθR

)( t

γR + θR
− 1

(γR + θR) 2

)
.

In the special case where θR = 0 (and setting the term with the constant of
integration to zero) long-run capital stock simplifies to R(t) = RI0

γR
.11

Taking the derivative of R(t) in equation (17) gives us the equation for growth
of R&D stock:

(19) Ṙ(t) = θR
RI0e

tθR

γR + θR
− γRe−tγR C1.

The proportional growth rate for R is:

(20)
Ṙ(t)

R(t)
=
θR

RI0e
tθR

γR+θR
− γRe−tγR C1

RI0e
tθR

γR+θR
+ e−tγRC1

.

11Note that θR = 0 does not imply that the R&D increment is zero. Under this assumption only the
growth rate of the increment is zero, while the R&D investments are a constant stream equaling RI0 in
each period.
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If we let the terms with constants of integration equal zero the proportional growth
rate for R&D stock R reduces to the growth rate of the R&D increment θR:

(21)
Ṙ(t)

R(t)
= θR.

Although growth of R&D stock Ṙ(t) depends on θR, γR, and RI0, the propor-
tional growth rate is a function only of θR. Particularly interesting is that the
depreciation rate γR drops out of the proportional growth rate. That is because
both the numerator Ṙ(t) and the denominator R(t) are subject to depreciation,
consequently the γR cancels out.

Let us stop to consider growth in R&D stock along a balanced growth path. A
balanced growth path is an idealized scenario when all macroeconomic variables
grow at a constant rate. Let us assume that the economy is growing at such a
constant rate θ∗Y . If the economy allocates a fixed percentage of its total output
to R&D, the growth rate of the R&D increment will equal the growth rate of
output:

(22) θ∗R = θ∗Y .

In equation (21) above we have shown that the rates of growth of R&D increment
equals growth of the overall R&D stock. It follows that along the balanced growth
path R&D stock will increase at the same rate as aggregate output:

(23)
Ṙ(t)

R(t)
= θ∗Y .

Under the assumption that the proportion of output allocated to R&D remains
fixed the model is consistent with balanced growth. The fixed-proportion assump-
tion can be justified on theoretical grounds as arising from the logic of balanced
growth. It is also in line with business and policy practice, supported by the obser-
vation that firms follow a fixed-proportion heuristic in budgeting for R&D, which
is adjusted infrequently. Furthermore, at the level of national policy governments
often commit to spend a target proportion of GDP on research.

Knowledge stock and growth

Armed with the information on R&D stock accumulation, we now consider the
production and accumulation of knowledge stock, in which the former plays a key
part. The incremental addition to knowledge stock (AI) is determined by the
R&D-based knowledge production function:
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(24) AI(t) = δ ∗ (R(t))ζ ∗ (A(t))φ.

Substituting the KPF into the knowledge stock accumulation equation we arrive
at the following law of motion for knowledge stock:

(25) Ȧ(t) = δ ∗ (R(t))ζ ∗ (A(t))φ − γA ∗A(t).

Because our focus is on the long-term dynamics, in further analysis we omit
the term related to the constant of integration, which, as mentioned previously,
equals 0 in the limit, as t → ∞. The solution of the differential equation (25)
gives us knowledge stock:

(26) A(t) =

δ
(
RI0e

tθR

γR+θR

)ζ
(1− φ)

ζθR + γA(1− φ)


1

1−φ

The rate of change in the stock of knowledge is:

(27) Ȧ(t) =

ζθR

 δ

(
RI0e

tθR

γR+θR

)ζ
(1−φ)

ζθR+γA(1−φ)


1

1−φ

1− φ

and the proportional growth rate is:

(28)
Ȧ(t)

A(t)
=

ζθR
1− φ

;φ 6= 1.

Knowledge grows at a rate proportional to the growth rate of the R&D invest-
ment increment θR. There is a positive relationship between proportional growth
rate of knowledge, the R&D growth parameter θR, the R&D stock elasticity of
knowledge parameter ζ, as well as the intertemporal elasticity of knowledge φ.
Because equation (28) is undefined at the point φ = 1, we need to impose a
technical restriction φ 6= 1.

If the model of the real economy is defined as in Romer (1990), along a balanced
growth path the growth rate of knowledge will pin down the growth rate in other
variables, including output, so that:
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(29)
Ẏ (t)

Y (t)
=
Ṙ(t)

R(t)
=
Ȧ(t)

A(t)
.

Along a balanced growth path, as output, R&D increment and R&D stock grow
at the same rate θ∗R, the proportional growth of the knowledge stock will equal:

(30)
Ȧ(t)

A(t)
=

ζθ∗R
1− φ

= θ∗Y ;φ 6= 1.

Equations (29) and (30) are reconciled under the following additional restriction:

(31) ζ + φ = 1.

To conclude, in a double-stock model, balanced growth equilibrium implies con-
stant returns to scale for the two inputs of knowledge production.

VII. Comparative Statics of Knowledge Stock

In an endogenous growth model the technological capability of the economy is
set by the accumulated stock of knowledge. Knowledge stock, in turn, is deter-
mined jointly by time and the knowledge and R&D production and accumulation
parameters: ζ, φ, θR, γA, γR, and RI0. It is therefore of interest to determine the
sensitivity of the technology level to the parameters. This aspect of technology
can be captured by the elasticity of knowledge stock (A) to the various parame-
ters of the knowledge accumulation model. The elasticity of Y with respect to X
represents the percentage change in variable Y as a result of a percentage change
in variable X, for which we adopt the notation σY X .

In the model presented, R&D stock is the only real-economy factor involved
in the creation of knowledge stock. The elasticity of A with respect to R repre-
sents the percentage increase in the technological sophistication of the economy
in response to a percentage increse in R&D stock, and can be shown to be:

(32) σAR =
ζ

1− φ
.

The sensitivity of knowledge stock to R&D stock is independent of various features
of accumulation, such as rates of depreciation γR and γA and the increment
growth rate θR. The elasticity σAR depends only on two parameters of knowledge
production: ζ and φ. The elasticity σAR is positively related to ζ and also to φ,
provided that φ < 1.

The relationship between knowledge stock and the rate of investment in R&D
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is captured by the elasticity of A with respect to θR:

(33) σAθR =
ζθR(t− 1)− ( 1

(γR+θR))

(1− φ)
.

The elasticity parameter σAθR depends positively on ζ, φ < 1, and the R&D
depreciation rate γR. The sensitivity of A to changes in θR varies with θR itself;
the greater θR, the higher is the elasticity. Furthermore, the elasticity is time-
dependent, increasing with the progression of time. The latter finding can be
understood as a result of the cumulative effect of a change in the R&D growth
rate.

As can be expected, knowledge stock is negatively affected by depreciation.
The change in A in response to change in γR is given by the equation for σAγR :

(34) σAγR = − ζγR
(γR + θR)(1− φ)

.

Higher values for knowledge production parameters ζ and φ < 1 increase the
absolute value of the elasticity of knowledge with respect to the R&D deprecia-
tion rate. An increase in the R&D growth rate θR, on the other hand, reduces
the absolute value of σAγR . Elasticity σAγR tends to be negative under realistic
assumptions for values of the other parameters in equation (34). For example, if
γR, θR, and ζ are greater than zero and 0 ≤ φ < 1, σAγR is negative—meaning
that an increase in the depreciation rate of R&D leads to a lower knowledge
stock. A similarly negative relationship obtains between knowledge stock and the
knowledge depreciation rate γA:

(35) σAγA = − γA
ζθR + γA(1− φ)

.

Under the above assumptions regarding the values of θR, ζ, φ, and assuming,
furthermore, that γA is positive, σAγA will be less than zero. The elasticity of
knowledge stock with respect to the knowledge stock depreciation rate abates, in
absolute value terms, at higher values of ζ and θR. More robust pace of allocation
of new resources for research (reflected in higher θR) and greater productivity
of R&D resources in the generation of new knowledge (observed as higher ζ)
ameliorate the negative effects of knowledge depreciation on the technology level.
When φ < 1, higher values of φ have an opposite effect, leading to greater elasticity
of knowledge stock to knowledge depreciation.



21 DRAFT APRIL 2015

VIII. R&D Accumulation Dynamics and the Measurement of the

Elasticity of Innovation

Having considered the influence of the several model parameters on the technol-
ogy level in Section (VII), we move to investigate the implications of our model
of knowledge dynamics for the modeling and measurement of innovation. While
technology level is represented in our model by knowledge stock A, innovation,
understood as the rate of arrival of new ideas, or alternatively, ”knowledge flow”,
is represented by Ȧ.12 The chief question is whether a model of knowledge dy-
namics that takes into account the accumulation of knowledge and R&D paints
the same picture of the way factors to knowledge production influence innovation.

The two factors of knowledge production are R&D (R) and knowldge (A) and
the impact of a factor on innovation output is captrued by the notion of output
elasticity. The elasticity of innovation with respect to R&D (σȦR) and knowledge
(σȦA) provide information on the percentage increase in innovation output in re-
sponse to a percentage increase to the the respective factor. The R&D elasticity of
innovation, in particular, has been the subject of some attention in the literature
because R&D is seen as the primary way of enhancing innovative performance
and growth.

In the context of our model of knowledge dynamics we can ask what would
be the R&D elasticity of innovation (σȦR) if we measure R&D as a stock and
whether that estimate will be different from an elasticity based on a measure of
R&D as a flow, as has been the method in the literature. We can recall that in
our model R&D stock is defined as per equation (17). As t→∞, the expression
for long-run R&D stock simplifies to:

(36) R(t) =
RI0e

θR∗t

γR + θR
.

We denote research flow with Ṙ to differentiate it from research stock. If we
measure research effort with the stream of current R&D flows, research effort will
be given by the equation:

(37) Ṙ(t) = RI0e
θR∗t.

Now, what would be the implication of measuring R&D elasticity of innovation
with flows as opposed to stocks? It turns out that the consequences can be serious.

The elasticity of innovation with respect to R can be derived from equations
(27) and (36):

12Recall the theoretical discussion in Section (III).
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(38) σȦR =
ζ2θR

(1− φ)2
.

The elasticity of innovation is positively related to parameters θR, ζ and φ. This is
the ”true” R&D elasticity of innovation for a knowledge generation dynamic pro-
cess in which earlier research expenditures contribute to current-period knowledge
production.

Elasticity of innovation with respect to Ṙ is obtained by replacing R with Ṙ in
the differential equation (25) and solving for A. Subsequently, Ȧ can be derived,
which in combination with equation (37) yields the expression:

(39) σȦṘ = ζ2θR.

The above formula for R&D elasticity of innovation obtains under the assumption
that only current-period R&D expenditures figure as factors in the production of
new ideas. If this assumption does not hold and research expenditures contribute
to innovation output with a lag, σȦṘ will be a biased estimate of the actual
impact of R&D expenditure on innovation. The magnitude of this distortion will
be given by the difference between the true and biased elasticity:

(40) σȦR − σȦṘ = θR
ζ2(2− φ)φ

(φ− 1)2
.

The bias will be zero if the R&D increment is constant (θR = 0), if R&D spending
has no role in knowledge creation (ζ = 0) or if intertemporal spillovers are absent
(φ = 0). However, under more realistic scenarios there will be a bias such that
σȦṘ will tend to underestimate the true elasticity. The structure of the bias is
determined by the technology parameters ζ and φ, but its magnitude is scaled by
the R&D growth rate θR. In many scenarios the degree of underestimation will
be extreme.

Figure 2 plots the measurement bias for various combinations of parameters ζ,
φ and R&D growth rate θR. The four contour plots in the figure represent dif-
ferent assumptions about the growth rate θR. The shading of the areas between
the contours represents the magnitude of the distortion, with lighter shading in-
dicating greater magnitudes. The black triange in each plot represents the ζ − φ
parameter space for which the magnitude of distortion is modest, 5% or less. The
white triangles show combinations of parameters for which σȦṘ underestimates
σȦR by 200% or more. In general, the degree of distortion is higher for higher
values of ζ and φ. Bias is also greater when R&D investment grows rapidly.
When θR = 5% the magnitude of distortion is 5% or less for slightly more than
half of the ζ − φ parameter space. This is a slight consolation since significant
distortions will still predominate in a large slice of the parameter space. Consid-
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Figure 2. Magnitude of Distortion in the Measure of σȦR

Note: Magnitude of distortion in the measuer of R&D elasticity of innovation is expressed in percentage
points, 1=100%.
Source: Authors’ calculation.

erable underestimation can be expected even for moderate R&D growth of 5%;
in this scenario large bias will result for the vast majority of parameter combi-
nations. When R&D grows at a rapid pace, measurements of the R&D elasticity
of innovation with R&D flows as opposted to R&D stocks will result in huge
underestimation of elasticity.

IX. R&D Accumulation Dynamics and Econometric Estimation

The use of short-term R&D flows in place of R&D stocks is also problematic
from the perspective of econometric estimation. Such substitution can be ex-
pected to lead to mis-estimation of the ζ parameter—which the previous section
has shown to be one of the determinants of overall R&D elasticity of innovation—
further biasing the elasticity estimate. Suppose we try to estimate the knowledge
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accumulation equation (25), which we reproduce below in a slightly modified
form, having incorporated the depreciation term into the dependent variable:

(41)
(
Ȧ(t) + γA ∗A(t)

)
= δ ∗ (R(t))ζ ∗ (A(t))φ.

On the surface this looks similar to the Romer-Jones KPF in equation (6). The
difference between the two equations is in the R variable and its content. In our
R&D-based KPF R consists of labor and physical capital components of R&D,
measured as stocks:

R(t) = K(t)κL(t)λ

=

(
KI0e

θK∗t

γK + θK

)κ(
LI0e

θL∗t

γL + θL

)λ
=

(
K̇(t)

γK + θK

)κ(
L̇(t)

γL + θL

)λ
(42)

In the Romer-Jones KPF only current-period labor flows L̇ are included as input
in knowledge production besides knowledge stock. We can separate R(t) into an
included and excluded component:

R(t) = L̇(t)X(t)

= L̇(t)

(
K̇(t)

γK + θK

)κ(
1

γL + θL

)λ
L̇λ−1.(43)

The variable X consists of adjustment of the labor input for accumulation, as well
as the entirety of physical capital stock involved in R&D.

Econometric estimation of (41) will typically involve linearization through log-
arithmic transformation. The log-transformed equation can then be estimated
via least squares as:

ln
(
Ȧ(t) + γA ∗A(t)

)
= ln(δ) + φ ln(A(t)) + ζ ln

(
L̄(t)X(t)

)
+ ε

= C + φ ln(A(t)) + ζ ln
(
L̄(t)

)
+ ζ ln (X(t)) + ε,(44)

where C is constant and ε is the stochastic error term.

Regression analysis on the basis of current R&D labor flows is tantamount
to exclusion of the composite X variable. As with any omitted variable, the
expectation of the ζ estimate might be biased. In this case the form of the
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estimator of ζ will be given by:

(45) ζ∗ = ζ̂ + ζ̂
Ĉov(ln(L̄), ln(X))

V̂ar(ln(L̄))
,

and its expectation as:

(46) E[ζ∗] = ζ + ζ
Cov(ln(L̄), ln(X))

Var(ln(L̄))
,

which can in turn be expressed as:

(47) E[ζ∗] = ζ(1 + ρ),

where ρ is the ratio of the covariance between the log of labor flows and the log of
the excluded component X over the variance of the log of labor flows. The sign
and magnitude of ρ will determine the direction and degree of distortion of the
expected value of the estimator of ζ. If ρ = 0, the estimate will not be biased;
with ρ > 0, then ζ will be overestimated; and if ρ < 0 then E[ζ∗] will be an
underestimate of true ζ. It can be shown that ρ is determined by the relationship
between labor flows and the omitted variables, so that:

ρ = κ
Cov

(
ln
(
L̄
)
, ln
(
K̄
))

Var
(
ln
(
L̄
)) − κ

− λ
Cov

(
ln
(
L̄
)
, ln (γL + θL)

)
Var

(
ln
(
L̄
)) − κ

Cov
(
ln
(
L̄
)
, ln (γK + θK)

)
Var

(
ln
(
L̄
)) .(48)

If the growth and depreciation rates θK , θL, γK , γL are constant, ρ simplifies to:

(49) ρ = κ

Cov
(

ln
(
L̇
)
, ln
(
K̇
))

Var
(

ln
(
L̇
)) − 1


Because variance is always positive, the sign of the covariance between labor flows
and capital flows will determine the direction of estimation bias. If the covariance
between labor flows and capital flows is negative, as would be the case if one input
is used to substitute for the other, ζ∗ is guaranteed to be an underestimate. If co-
variance has positive sign the magnitude of bias will depend on the ratio of the co-

variance term to the variance of labor. If Cov
(

ln
(
L̇
)
, ln
(
K̇
))

> Var
(

ln
(
L̇
))

,

as might be expected if R&D labor and physical capital are complements, then
ρ > 0, leading to empirical overestimation of ζ∗. In the unlikely case that the
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covariance term is positive and equal in magnitude to the variance of labor, the es-
timate of the ζ∗ parameter will be accurate. All estimation biases can be avoided
by correctly specifying the knowledge production function.

X. Omission of Physical Capital and its Implication for Balanced Growth

The above model of the knowledge sector embeds the R&D-based knowledge
production function in a framework of double-stock accumulation. Having shown
the significance of the model to accurate measurement and estimation of knowl-
edge dynamics, we note a special implication of the model for balanced growth.

In his seminal endogenous growth model, Romer (1990) assumes a knowledge
production function of the form:

(50) Ȧ = δHAA

where Ȧ is growth in knowledge, HA is human capital (assumed to be working in
the research sector), A is knowledge stock, and δ is the arrival rate of innovations.
This specification for knowledge production implies a proportional growth rate of
knowledge:

(51)
Ȧ

A
= δHA.

Growth of knowledge—and of all other variables—is determined by the level of
human capital HA. One implication of the Romer knowledge production function
is that ideas-driven growth is possible even in the absence of growth in human
capital or growth in population working in research.

Critical of the ”scale effects” implications of the Romer model, Jones (1995)
proposes a parametrized knowledge production function

(52) Ȧ = δLλAA
φ

where LA is labor employed in the research sector, λ is a parameter measuring the
return of knowledge from R&D labor and φ is the intertemporal spillover param-
eter. The functional form adopted by Romer is similar to the Jones knowledge
production function, but with parameters λ and φ set to 1. Jones’ knowledge pro-
duction function implies that along the balanced growth path, the proportional
growth rate of kowledge will be:

(53)
Ȧ

A
=
λ
(
L̇A
LA

)
1− φ

.

The Jones function eliminates scale effects but it also means that to have ideas-
driven growth it is not enough to have non-zero employment in the research
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sector. Contrary to Romer, in Jones (1995), long-term growth in knowledge
requires employment in the R&D sector to grow as well.

These examples from the literature illustrate that the specification of the knowl-
edge production function is not trivial. Different functional forms can lead us to
widely different conclusions. Variations on the Romer-Jones knowledge produc-
tion function has been widely used in endogenous growth literature (Freire-Seren,
2001; Sequeira, 2012) and in other research on innovation (Porter and Stern,
2000).

Our model is based on a knowledge production function:

(54) Ȧ = δRζAφ

where R is R&D stock and ζ is the R&D to knowledge parameter. R&D stock, R,
is the sum of lagged and depreciated R&D effort subsuming human- and physical-
capital components. Replacing the R composite with its physical and human
capital components gives equation (9), which we reproduce here for convenience:

(55) Ȧ = δ(LλζA K
κζ
A )Aφ.

From the point of view of long-term growth, and for comparison with equations
(51) and (53), one might be curious about the implications of the above form
for idea-based growth. Dividing both sides of (55) by A and taking the time-
derivative gives us the following balanced path growth rate for knowledge stock:

(56)
Ȧ

A
=

ζ

(
λ L̇ALA + κ K̇AKA

)
1− φ

.

In the long run, the proportional growth rate of knowledge and the economy as a
whole is a weighted average of the proportional growth rates of labor and physical
capital in the R&D sector multiplied by the term ζ

1−φ . This model is not charac-
terized by scale effects; at the same time zero growth in LA does not automatically
imply dissipation in the growth rate of ideas. Strictly speaking, idea-based growth

is possible even when labor growth is zero. In the case when L̇A
LA

= 0 idea-based
growth can be fueled exclusively by the accumulation of research physical capital.
Since the R&D sector is fairly capital-intensive13 an R&D-based model would be
incomplete without R&D physical capital.

We argue that equations (54) and (55) provide a more complete model of the
knowledge sector. The difference from Romer-Jones is not only in the inclusion
of an important omitted variable, KA, but also in the incorporation of R&D
accumulation dynamics. Variables R and A represent stocks that can grow and

13Table A1 shows that in most countries physical capital constitutes a substantial share of R&D
expenditures. The capital-intensity of the R&D sector has also been noted by Porter and Stern (2000).
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depreciate. The presence of two stock variables in the knowledge production
function mean that the accumulation of R will interact with accumulation of A.

XI. Conclusion

This paper developed a model of knowledge and R&D accumulation dynamics.
The model includes two stocks, a knowledge stock representing the sum total
of technologically relevant ideas, and a separate R&D stock, representing the
accumulated effort devoted to the discovery of new knowledge. Prior research on
economics of innovation tended to spotlight only one of these two variables, often
conflating knowledge and R&D.

Our model is distinct from functional forms commonly appearing in research
on rates of return to R&D—which have considered R&D stocks but apart from
knowledge accumulation. It is also different from the Romer-Jones knowledge
production function commonly relied on in Endogenous Growth Theory, which
includes only current period discovery effort from labor employed in the R&D
sector. The model takes into account the entirety of effective R&D stock into
R&D-based models of growth.

Taking both R&D and knowledge stocks into account brings into the field of
vision aspects of growth and innovation that theory previously left out of sight.
It brings into view the possibility of ideas-driven growth that relies neither on
Romer’s razor-edge restriction nor on Jones’ requirement of positive R&D pop-
ulation growth. Finally, the model paves the way for estimation of innovation
and growth processes while avoiding estimation biases that likely impacted prior
empirical work on productivity.
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Appendix

Griliches knowledge production and its relationship to the Perpetual
Inventory Method

The stock of technologically relevant knowledge A is given by the following
equation:

(A1) A = G(W (B)R).

Here, W (B) represents a lag polynomial, in which B is the backward shift oper-
ator, so that:
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(A2) W (B)R = w0Rt + w1Rt−1 + w2Rt−2 + ... =
t∑

i=−∞
wt−iRi.

If the constant R&D depreciation rate is γ, the lag polynomial is a geometric series
with common ratio (1− γ). Knowledge stock at time t can then be expressed as:

(A3) At =
t∑

i=−∞
(1− γ)(t−i)Ri.

Note that equation (A3) is a modification of equation (3) that takes into account
the depreciation of stocks over time.

The current-period investment increment is not adjusted for depreciation—the
addition to the stock in period t equals Rt. Previous investments, however, are
adjusted for depreciation. Extracting Rt from the right-hand side of equation
(A3), the total stock at time t can be decomposed into the sum of Rt and the
depreciated stock from the previous period t−1, leading to the perpetual inventory
method (PIM) equation for calculating stocks:

(A4) At = Rt + (1− γ)At−1.



33 DRAFT APRIL 2015

Table A1—Share in R&D Expenditure

Country Period Capitala Laborb Otherc Total
Argentina 1998-2011 0.09 0.71 0.20 1.00
Australia 1981-2008* 0.10 0.47 0.44 1.00
Austria 1981-2011* 0.10 0.51 0.39 1.00
Belgium 2000-2011 0.09 0.60 0.31 1.00
Chile 2007-2010 0.25 0.46 0.21 1.00
China 1998-2012* 0.19 0.24 0.56 1.00
Chinese Taipei 1998-2012 0.11 0.48 0.41 1.00
Czech Republic 1995-2012 0.14 0.38 0.48 1.00
Denmark 1981-2011* 0.09 0.56 0.35 1.00
Estonia 2005-2011 0.25 0.43 0.31 1.00
Finland 1981-2011* 0.06 0.52 0.42 1.00
France 2002-2011 0.10 0.58 0.32 1.00
Germany 1981-2011* 0.10 0.58 0.32 1.00
Greece 1995-2005* 0.15 0.59 0.26 1.00
Hungary 1992-2011* 0.13 0.43 0.39 1.00
Iceland 1981-2011* 0.10 0.58 0.32 1.00
Ireland 1981-1993 0.15 0.53 0.32 1.00
Israel 1993-2012 0.07 0.74 0.19 1.00
Italy 1981-2011* 0.12 0.56 0.32 1.00
Japan 1981-2011 0.13 0.43 0.45 1.00
Korea 1995-2011 0.14 0.38 0.47 1.00
Mexico 1993-2007* 0.19 0.56 0.24 1.00
Netherlands 1981-2011* 0.10 0.57 0.33 1.00
New Zealand 2005-2011* 0.10 0.52 0.38 1.00
Norway 1981-2011* 0.09 0.56 0.35 1.00
Poland 1994-2011 0.21 0.41 0.38 1.00
Portugal 1982-2011 0.18 0.58 0.24 1.00
Romania 1995-2011 0.12 0.49 0.39 1.00
Russian Federation 1994-2012 0.05 0.53 0.42 1.00
Singapore 1998-2012 0.20 0.42 0.38 1.00
Slovak Republic 1996-2012 0.12 0.44 0.44 1.00
Slovenia 1993-2011 0.11 0.55 0.34 1.00
South Africa 2001-2010* 0.12 0.45 0.43 1.00
Spain 1999-2011 0.17 0.56 0.27 1.00
Sweden 2007-2011* 0.04 0.40 0.32 1.00
Switzerland 1992-2008* 0.07 0.57 0.35 1.00
Turkey 2001-2011 0.17 0.47 0.36 1.00

Note: Table provides a country comparison of the cost structure of total intramural R&D for the time
period indicated in the second column. Total intramural R&D includes R&D spending by government,
business enterprises, higher education and private non-profit entities.
Asterisk (*) indicates that data was not available for some years during the period indicated.
a Consists of expenditure on equipment and buildings. b Expenditure on salaries. c Other current costs.
Source: OECD STAN Database


